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SUMMARY

Bone morphogenetic protein (BMP) signaling and fluid shear stress (FSS) mediate
complementary functions in vascular homeostasis and disease development. It re-
mains to be shown whether altered chromatin accessibility downstream of BMP
and FSS offers a crosstalk level to explain changes in SMAD-dependent transcrip-
tion. Here, we employed ATAC-seq to analyze arterial endothelial cells stimu-
lated with BMP9 and/or FSS. We found that BMP9-sensitive regions harbor
non-palindromic GC-rich SMAD-binding elements (GGCTCC) and 69.7% of these
regions become BMP-insensitive in the presence of FSS. While GATA and KLF
transcription factor (TF) motifs are unique to BMP9- and FSS-sensitive regions,
respectively, SOX motifs are common to both. Finally, we show that both
SOX(13/18) and GATA(2/3/6) family members are directly upregulated by
SMAD1/5. These findings highlight the mechano-dependency of SMAD-signaling
by a sequential mechanism of first elevated pioneer TF expression, allowing sub-
sequent chromatin opening to eventually providing accessibility to novel SMAD
binding sites.

INTRODUCTION

Blood flow through the vascular network generates mechanical forces, as fluid shear stress (FSS), exerted

on endothelial cells (ECs).1 FSS has been shown to induce drastic transcriptomic and epigenetic cellular

responses in ECs2–6 and diversely integrate into cellular signaling pathways, such as the bone morphoge-

netic protein (BMP) and transforming growth factor b (TGFb) pathways.7–9

BMPs were shown to regulate angiogenesis and vascular homeostasis. Hence, dysregulation of signaling can

lead to severe vascular diseases.10,11 Several members of the BMP ligand family are found in human plasma

(BMP2, 4, 6, 7, 9, and 10) with distinct roles in regulating vascular functions, dependent on the expression of their

corresponding high affinity receptors.11–14 In ECs, BMP6 signaling leads to transcription of only a limited set of

SMAD1/5 target genes (e.g., ID1, ID2, HES1),15 while BMP9 signaling was reported to be more potent and in-

duces a broad variety of additional SMAD1/5 targets (e.g., HEY1, HEY2, JAG1, VEGFR1, GJA5, OCLN).16–19

These additional SMAD1/5 target genes are associated with endothelial quiescence19–21 and underline that

different BMPs can induce distinct biological functions in the vasculature.

SMADs have been shown to bind to distinct DNA motifs via their MH1 domain.22 Initially, TGFb R-SMADs 2/3

and SMAD4 were reported to bind GTCT(C/G) motifs, also called SMAD binding elements (SBEs).23–27 More

recently, all R-SMADs and SMAD4 were found to recognize 5GC motifs as well as SBE sites although

R-SMADs 2/3 and SMAD4 binds as monomers whereas SMAD1/5/8 recognize these sites as dimers.26,28

ChIP-seq experiments revealed the occurrence of two different forms of GC-SBEs: (1) a palindromic GC-SBE

(pGC-SBE; GGCGCC), which was enriched in SMAD1-bound regions common to different cell types, and (2)

a non-palindromic GC-SBE (npGC-SBE; GGCTCC), which was associated with cell type specific SMAD1-bound

regions. Interestingly, reporter gene experiments revealed that stimulation with either BMP6 or BMP9 of re-

porters containing pGC-SBE-motifs lead to higher activity than those containing npGC-SBE.16

A special group of DNA binding factors, termed pioneer transcription factors (TFs), can bind to nucleo-

somal DNA and make it accessible for subsequent binding of other TFs.29 Recently, it was shown that
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SOX13, a member of the SOX pioneer TF family,30 is robustly upregulated by FSS and suppresses pro-in-

flammatory gene expression.31 Similarly, pioneer TF KLF4 mediates vasculo-protective gene expression in

response to FSS.32 On the other hand, GATA TFs have been shown to be upregulated by atheroprone

FSS.33 Interestingly, SMADs have been shown to cooperate with a wide set of pioneer factors, including

ETS and GATA TFs.34 However, detailed analysis of SMAD-pioneer factor DNA binding dependencies in

response to BMPs and FSS are lacking.

Therefore, we applied assay for transposase accessible chromatin followed by sequencing (ATAC-seq)35 to

assess TF motif enrichment in BMP9 and FSS stimulated ECs. Regions that display enhanced accessibility

upon BMP9 stimulation are enriched for non-palindromic GC-SBEmotif GGCTCC. Further, we observed an

FSS dependent switch from SOX and GATA to SOX-only motif enrichment in BMP9-sensitive regions,

demonstrating context dependent regulation of BMP9-sensitive regions.

RESULTS

BMP9 but not BMP6 selectively enhances expression of pSMAD1/5 high-dose target genes in

arterial ECs

Both BMP9 and BMP6 are systemic BMPs with distinct functions on ECs,15,36–38 however BMP9 is biologi-

cally active by inducing C-terminal phosphorylation of SMAD1/5 at pM concentrations while BMP6 is active

in the nanomolar range.15,16,39–41 We therefore performed a comparative study for both ligands in human

umbilical arterial endothelial cells (HUAECs) in their respective activity range, i.e., 5nM for BMP6 and 0.3 nM

for BMP9 (Figure 1A) and investigated the phosphorylation of SMAD1/5 (pSMAD1/5). Over a time-course of

2 h, BMP9 strongly increased pSMAD1/5 while BMP6 showed only amild induction (Figure 1B). This is in line

with higher expression of BMP9-high affinity receptor ALK1 compared to BMP6-high affinity receptor ALK2

(S1A-B).41,42 We next investigated the transcriptional regulation of known BMP-SMAD1/5 target genes af-

ter 2 h ligand stimulation. While both ligands led to a similar induction of some target genes, i.e., ID1 and

ID3 (Figures 1C and S1C), BMP9 stimulation led to a more prominent upregulation of other target genes

when compared to BMP6, i.e., UNC5B, ID2, HEY1, and SNAI1 (Figures 1D and S1D). Differential target

gene regulation was confirmed in human aortic ECs (Figure S2A). Consequently, SMAD targets were

grouped into pSMAD1/5 low-dose and high-dose target genes, which are responsive to low or high levels

of phosphorylated SMADs as elicited by BMP6 or BMP9. SMAD1/5 dependency could be confirmed by

siRNA depletion for members of both low- and high-dose targets, i.e., ID1 and UNC5B (Figures 1D and

S1E). Finally, we tested if these effects are also seen on protein level. In line with the transcriptional effects,

ID1 protein levels were similarly regulated by BMP9 or BMP6 (Figures 1E, 1F, and S1F). In contrast, UNC5B

protein sequentially followed strong SMAD1/5 phosphorylation induced by BMP9 only (Figures 1E, 1F, S1F,

and S1G). In summary, in HUAECs BMP6 and BMP9 can elicit distinct transcriptional responses dependent

on the levels of SMAD1/5 phosphorylation. Accordingly, pSMAD1/5 high-dose target genes such as

UNC5B respond to strong SMAD1/5 phosphorylation as induced by BMP9 but not BMP6, while

pSMAD1/5 low-dose target genes like ID1 are equally induced by either of both BMP ligands.

pSMAD1/5 high-dose target regions require chromatin opening

BMP9-dependent regulation of target genes plays a crucial role in the physiological homeostasis of

vascular ECs but is equally associated with patho-physiological processes.19,20,43 To get deeper insights

in BMP9 regulation of target genes we used ATAC-seq and identified genomic chromatin accessibility

depicting active (open) chromatin regions upon BMP9 stimulation of HUAECs. We found that BMP9 stim-

ulation leads to a prominent increase in accessibility compared to control (n = 15087 for opening versus n =

8180 for closing regions) (Figure 2A). Interestingly, increased chromatin accessibility was prominent in

pSMAD1/5 high-dose target UNC5B in a SMAD1/5 bound region (Regulatory region 22, Rr 22) while other

SMAD1/5 bound regions in the gene locus showed no differential accessibility (Figure 2B, upper panel).

Intriguingly, when we cloned the respective SMAD1/5 bound regions into luciferase-based reporter

gene constructs, only Rr 22 led to a significant increase in luciferase activity in HEK293T cells stimulated

with BMP6, which is more potent than BMP9 in inducing SMAD1/5 dependent BRE2-reporter activity in

these cells (Figures S3A and S3B). In contrast to UNC5B, we didn’t observe any significant changes in chro-

matin accessibility in the locus of pSMAD1/5 low-dose target ID1 (Figure 2B, lower panel). We next defined

BMP-sensitive regions (BSRs) as the regions that show increased accessibility upon BMP treatment and

compared the overlap of BSRs with published SMAD1-bound regions (SBRs) as identified by SMAD1

ChIP-seq.16,44 Out of 23,627 BSRs, 596 overlapped with BMP9-induced SBRs in HUVECs and 1719 SBRs

in BMP9 stimulated HPAECs (Figure 2C). Subsequently, we applied enrichment analysis to attribute
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Figure 1. BMP6 and BMP9 differentially regulate pSMAD1/5 low- and high-dose target genes

(A) In all panels, HUAECs were stimulated for the indicated time points with either BMP6 (5 nM) or BMP9 (0.3 nM) after 3 h

of starvation. Low (BMP6) or high (BMP9) SMAD1/5 phosphorylation was detected by immunoblot using respective

antibodies.

(B) Immunoblot showing short-term (up to 2 h) BMP6 or BMP9 responses on HUAECs using antibodies against phospho

(p)SMAD1/5, total (t)SMAD1 and GAPDH (representative blot, n = 3 independent experiments).

(C) qRT-PCR showing expression of pSMAD1/5 low-dose target gene ID1, characterized by equal induction downstream

of BMP6 and BMP9, and pSMAD1/5 high-dose target gene UNC5B characterized by higher BMP9 induction. Values are

expressed as mean fold induction (F.I.) GSD (n = 3–4 independent experiments).

(D) After 2 days of siRNA treatment (scrambled control, siSMAD1 or siSMAD5), HUAECs were stimulated with BMP9 for 2

h. qRT-PCR shows decreased UNC5B and ID1 induction in the absence of SMAD1/5. Values are expressed as mean fold

induction (F.I.) GSD (n = 3 independent experiments).

(E) Immunoblot showing long-term (up to 24 h) BMP6 and BMP9 response on HUAECs using antibodies against UNC5B,

pSMAD1/5, ID1, tSMAD1 and GAPDH (representative blot of n = 3).

(F) Densitometric quantification of UNC5B and ID1 relative to GAPDH levels expressed as mean fold induction (F.I.) GSD

in arbitrary units (AU) (n = 3–4). Statistical significance within groups (C,F) or relative to si-scr (D) was calculated using two-

way ANOVA and Tukey’s post-hoc test.; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S1 and S2.
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functional significance to the regions gaining and losing activities upon BMP9 stimulation using GREAT.45

Interestingly, regions activated by BMP9 stimulation were, inter alia, associated with the GO term pathway-

restricted SMAD phosphorylation (Figure 2D), supporting the suitability of our approach. We next asked

which TFs might drive the genomic changes upon BMP9 treatment and performed motif enrichment anal-

ysis using HOMER.46 We found that BMP9-sensitive, active regions were mostly enriched for GATA and

SOX pioneer TF motifs (Figure 2E). Furthermore, using de novo motif analysis, we detected two motifs
iScience 26, 107405, September 15, 2023 3



Figure 2. ATAC-Seq identifies pSMAD1/5 high-dose targets

(A) Heatmap and intensity profile depicting ATAC-seq coverage of BMP9-induced opening and closing regions in HUAECs 2 h after BMP9 stimulation.

(B and H) Genome browser view of ATAC-seq and two publicly available BMP9-stimulated vascular SMAD1 ChIP-seq datasets (GSM2805410/1, GSM684747)

on (B) UNC5B and ID1 locus and (H) SOX18 andGATA3 locus. SBR – SMAD1 bound region, identified by overlapping ChIP-seq signals. BSR – BMP9-sensitive

region, identified by increased ATAC-seq signal in BMP9 vs. unstimulated (w/o) HUAEC.

(C) Venn diagram depicting overlaps in BMP9-sensitive regions (BSRs) from ATAC-seq and SBRs identified by ChIP-seq.

(D) Gene Ontology enrichment analysis of opening and closing BSRs. Data was produced using GREAT tool.

(E) Volcano plot, highlighting significantly enriched motifs in ATAC-seq opening versus closing regions (FC R 1.5) found by HOMER tool. Pioneer

transcription factor SOX and GATA families are significantly enriched (highlighted in bold).

ll
OPEN ACCESS

4 iScience 26, 107405, September 15, 2023

iScience
Article



Figure 2. Continued

(F) Enrichment of de-novo predicted GC-SBE- and SBE-like motifs in peaks with different fold changes between BMP9 and unstimulated ATAC-seq peaks.

(G) qRT-PCR showing expression of pSMAD1/5 high-dose target genes SOX18 and GATA3 characterized by higher BMP9 vs. BMP6 induction. Values are

expressed as mean fold induction (F.I.) GSD (n = 3 independent experiments).

(I) After 2 days of siRNA treatment (scrambled control, siSMAD1 or siSMAD5) HUAECs were stimulated with BMP9 for 2 h. qRT-PCR shows no SOX18 and

GATA3 induction in the absence of SMAD1/5. Values are expressed as mean fold induction (F.I.) GSD (n = 3 independent experiments).

(J) Scatterplot of footprint scores for SOX13/17/18, GATA2/3/6, GC-SBE & SBE motifs shows elevated differential binding score in BMP9 vs. w/o. Filled dot

indicates top 5 ranking TFs. Statistical significance within groups (G) or relative to si-scr (I) was calculated using two-way ANOVA and Tukey’s post-hoc test.;

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S2, S3, S4 and S5.
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which harbor the previously reported GC-rich SMAD binding element (GC-SBE)16 or the SBE motif

(GTCTG/CAGAC).47 Both the GC-SBE-like motif as well as the SBE-like motif were enriched (19.1% versus

5.59% baseline, 26.65% versus 11.97% baseline) in BMP9-sensitive active regions compared to controls

(fold change >1.5) (Figure 2F). A recent study highlighted that short variations of the GC-SBE (5bp GC-

SBEs) are clustered in SMAD1 ChIP-seq peaks,22 thereby likely allowing sufficient binding of trimeric

SMAD complexes. We investigated occurrence and clustering of GC-SBEs, 5bp GC-SBEs and SBEs in

BMP9-induced active regions in a similar manner. However, less than 10% of differential ATAC-seq peaks

contained GC-SBEs or 5 bp GC-SBEs, and less than 20% harbored SBE motifs, while neither of them was

prominently clustered (Figure S3C). Interestingly, the relative occurrence of pGC-SBE to npGC-SBE was

prominently lower in ATAC-seq (1:8.4; 0.7%/5.89%) compared to ChIP-seq (3.2:1; 99.75%/30.82%) peaks.

(Figure S3C).

Next, we validated which GATA and SOX family members could account for increased SOX/GATA binding

in BMP9-sensitive regions. Collectively,GATA2/3/6 as well as SOX13/17/18were differentially regulated on

a transcript level 2 h after BMP9 stimulation (Figures 2G and S4A). This is in line with SMAD1-binding in

proximity or within the GATA2/3 and SOX13/18 loci (Figures 2H and S4B). Furthermore, we observed a

loss (GATA3 and SOX18) or reduction (GATA2,6 and SOX13) of BMP9-responsiveness upon siRNA medi-

ated depletion of SMAD1/5. (Figures 2I and S4C). Finally, we complemented our motif enrichment analysis

with TF footprinting analysis, both for BMP9 induced and control samples using TOBIAS.48 We observed

footprints of SOX andGATA binding sites as well as GC-SBE and SBEmotifs in BMP9-induced ATAC peaks,

indicating SMAD, SOX and GATA occupancy within BSRs (Figures 2J and S4D–S4F).

We further investigated the BSR regions containing GC-SBE footprints (GC-SBE+) and found that half of

them harbored npGC-SBEs in proximity to SBEs (npGC-SBE+, 51,9%) (Figure S5A). In contrast to

pSMAD1/5 low-dose target genes ID1/2/3 which harbor composite motifs of a palindromic GC-SBE and

SBE with a motif spacer of 5 bp,16 potential npGC-SBE composite motifs were characterized by varying

spacer lengths from 3 to 17bp (Figure S5A). Interestingly, 60.7% of npGC-SBE+ peaks contained also at

least one SOX motif (SOX-motif+), while 34,3% carried a GATA motif (GATA-motif+) and collectively

75,5% harbored either an SOX or a GATAmotif. For example, BSRs carrying npGC-SBE footprints together

with SOX or GATA footprints were found in proximity of the MAL2, PRICKLE2 and SGK1 loci, which all

showed stronger upregulation by BMP9 compared to BMP6 on transcript level, characteristic of known

pSMAD1/5 high-dose target genes (HEY1, UNC5B and SNAI1) (Figures 1C and S5B). Finally, we validated

that BMP9-dependent upregulation ofGATA2/3/6 and SOX13/17/18 is also seen in human aortic ECs, sug-

gesting a common endothelial BMP9 responsiveness of these TFs (Figure S2B).

Taken together, BMP9 induces SOX13/18 and GATA2/3/6 in a SMAD1/5-dependent manner and BMP9-

sensitive active regions mostly harbor SOX and GATA motifs together with SMAD binding sites. These

GC-SBE+ BSRs (1) carry mostly npGC-SBE (GGCTCC) motifs, (2) lack SBE clustering and (3) contain compos-

ite motifs with a variable spacer distance.

FSS as modulator of BMP9-target gene regulation

FSS fine-tunes vascular BMP signaling with studies showing that it potentiates BMP9 responses in

ECs.9,49,50 We were therefore interested if FSS and BMP9 co-regulate expression of pSMAD1/5 high-

dose target genes. We exposed HUAECs to FSS of 30 dyn/cm2 for 2 or 6 h (RNA & ATAC-seq samples 2

h; protein samples 2 & 6 h) using a pneumatic pump system (Figure 3A). We observed alignment of

HUAECs along the direction of flow for both time-points (Figure S6A) and the induction of flow-responsive

pioneer TF KLF2 (Figure 3B),51 validating our flow set-up. We next performed ATAC-seq of FSS exposed

HUAECs and could similarly observe a strong increase in accessibility downstream of the KLF2 locus
iScience 26, 107405, September 15, 2023 5



Figure 3. Fluid Shear Stress modulates BMP9-dependent regulation of chromatin accessibility

(A) Scheme depicting Fluid Shear Stress (FSS) set-up (left) and the applied shear regime (right).

(B–G) HUAECs were allowed to adapt for 6 h to 30 dyn/cm2 in EBM2 with 1% FCS and stimulated with or without BMP9 (0.3 nM) for 2 h for ATAC-seq. and RNA

analysis, or 6 h for protein analysis with and without FSS. (B) Genome browser view of BMP9, FSS and BMP9/FSS ATAC-seq data on KLF2 locus and qRT-PCR

showing KLF2 expression after 2 h of the respective stimulation. Values are expressed as fold induction (F.I.) GSD relative to static w/o BMP9 (n = 4

independent experiments). (C) Gene Ontology enrichment analysis of FSS ATAC-seq data for opening and closing regions. Data was produced using

GREAT tool. (D) Immunoblot of phosphorylated SMAD1/5 after 2 h of BMP9 stimulation with and without FSS with the respective densitometric

quantification expressed as mean fold induction (F.I.) GSD in arbitrary units (AU) (n = 3 independent experiments). (E) Venn diagram showing overlap of
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Figure 3. Continued

differentially accessible regions of BMP9, FSS and BMP9/FSS ATAC-seq compared to untreated cells. (F) Genome browser view of BMP9, FSS and

BMP9/FSS ATAC-seq data on NOG and UNC5B locus and qRT-PCR showing gene expression after 2 h of the respective stimulation. Values are

expressed as fold induction (F.I.) GSD relative to static w/o BMP9 (n = 3 NOG, n = 4 UNC5B; independent experiments). (G) Immunoblot showing

UNC5B levels after 6 h of FSS stimulation with or without BMP9 stimulation (representative blot, n = 3) and (lower) densitometric quantification of

UNC5B relative to GAPDH levels expressed as mean fold induction (F.I.) GSD in arbitrary units (AU) (n = 3). Statistical significance compared to static

w/o BMP9 was calculated using one-way ANOVA and Dunnett‘s post-hoc test (B, F) or two-way ANOVA and �Sı́dák’s post-hoc test (G).; *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figures S6 and S7.
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(Figure 3B). Overall, FSS led to both activation and inactivation of chromatin regions (n = 21,857 for open-

ing, n = 19,546 for closing regions) (Figure S6B). Subjecting differentially accessible regions to GREAT for

functional annotation,45 we found that FSS-sensitive active regions were associated with the term response

to fluid shear stress, highlighting the suitability of ATAC-seq data to analyze cellular responses to FSS (Fig-

ure 3C). Using HOMER motif enrichment analysis, we found that FSS-sensitive active regions were mostly

enriched for KLF and SOX TF family motifs, whereas the regions losing their activity carry ETV/ETS and

TEAD family motifs (Figure S6C).

Next, we evaluated whether FSS alters BMP9 induced SMAD1/5 phosphorylation, but we observed no sig-

nificant differences between these conditions (Figure 3D). Subsequently, we compared accessibility pro-

files of the cells stimulated with only BMP9, only FSS, or a combination of both (BMP9/FSS). Strikingly,

we observed that out of 23,254 regions differentially regulated upon BMP9 stimulation under static condi-

tions, only 7,042 (30.28%) regions were shared upon simultaneous BMP9 and FSS stimulation, while more

than 9,000 regions were unique to the BMP9/FSS condition (Figure 3E). This is in line with GC-SBE and SBE

footprints being enriched in FSS-induced closing regions, suggesting an inhibitory effect of FSS on BMP9-

induced SMAD1/5 target gene regulation (Figure S6D).

Exemplarily, a pGC-SBE+ & GATA-motif+ BSR downstream of the NOG locus showed a strong increase in

accessibility upon BMP9 stimulation under static conditions, which was lost if exposed to BMP9/FSS, as also

validated by NOG mRNA levels (Figures 3F and S7A). In contrast, UNC5B locus harbors a pGC-SBE+ &

GATA-motif+ region (Rr 22) that was inducible by both BMP9 and BMP9/FSS. Accordingly, expression

levels of UNC5B were significantly elevated upon stimulation with BMP9, FSS and BMP9/FSS stimulation

(Figures 3F and S7A). Similarly, protein levels of UNC5B were significantly higher after BMP9/FSS stimula-

tion compared to BMP9 or FSS only stimulations (Figure 3G). Taken together, we show that FSS drastically

alters BMP9 induced chromatin changes and that FSS can act either synergistically or antagonistically on

BMP9-SMAD1/5 signaling.
BMP9 and FSS collectively regulate chromatin accessibility

In order to get deeper insights into co-regulation of target genes in BMP9/FSS, we analyzed regions that

were closing (n = 903, Cat a) or opening (n = 3158, Cat d) upon both BMP9 and FSS, closing upon BMP9 and

opening upon FSS (n = 950, Cat b) or opening after BMP9 stimulation but closing after FSS stimulation (n =

1270 Cat c) (Figure 4A). We next annotated biological functions of genomic regions in Cat a and d using

GREAT. In Cat a, regions were associated with terms regulation of actin cytoskeleton organization, angio-

genesis or negative regulation of notch signaling (Figure 4B). More interestingly, regions in Cat d were

associated with terms pathway-restricted SMAD phosphorylation and positive regulation of TGFb receptor

signaling pathway (Figure 4B) reflecting on the complex co-regulation of BMP9 and FSS on pSMAD1/5

high- and low-dose target genes. Next, we performed TF motif enrichment analysis in regions differentially

accessible in BMP9/FSS against unstimulated control using HOMER. We found SOX, BACH, and FOS/JUN

TF motifs to be enriched in activated regions while ETS/ETV, EWS, and TEAD TF family were enriched in

inactivated regions (Figure 4C). Accordingly, we observed that BMP9, FSS or BMP9/FSS stimulation led

to enhanced accessibility of a npGC-SBE+/SOX-motif+ BSR upstream of SPSB1, accompanied by elevated

expression of SPSB1 (Figures 4D and S7B). In contrast a npGC-SBE+/ETS-motif+ BSR upstream of BCAR1

showed reduced accessibility in line with decreased expression of BCAR1 in all three conditions (Figures 4D

and S7B). Finally, we investigated the expression of SOX and GATA TFs in the presence and absence of

FSS. We found that FSS inhibited BMP9-induced expression ofGATA2/3/6while BMP9 induced expression

of SOX13/17/18 was either similarly strong (SOX13/18) or elevated (SOX17) by additional FSS stimulation

(Figures 4E and S8). Collectively, this suggests a BMP9-dependent mechano-sensitive chromatin opening.

Collectively, this suggests a BMP9-dependent mechano-sensitive chromatin opening, including
iScience 26, 107405, September 15, 2023 7



Figure 4. Fluid Shear Stress and BMP9 co-regulate chromatin accessibility

(A) Heatmaps depicting ATAC-seq coverage in regions opening and closing in the same or opposite way in BMP9, FSS and BMP9/FSS ATAC-seq regions.

(B) Gene Ontology enrichment analysis of ATAC-seq data for regions opening or closing in both, BMP9 and FSS samples. Data was produced using GREAT

tool.

(C) Motif enrichment analysis of genomic regions sensitive to both, BMP9 and FSS individually using HOMER tool. Pioneer transcription factor SOX family is

significantly enriched (highlighted in bold).

(D and E) Genome browser view of BMP9, FSS and BMP9/FSS ATAC-seq data on (D) SPSB1 and BCAR1 loci (E) SOX17 andGATA3 loci and qRT-PCR showing

gene expression after 2 h of the respective stimulation. Values are expressed as fold induction (F.I.) GSD relative to static w/o BMP9 (n = 4–5 independent

experiments). BSR – BMP9 sensitive region, FSR – Fluid Shear Stress sensitive region. Statistical significance compared to static w/o BMP9 was calculated

using one-way ANOVA and Dunnett‘s post-hoc test.; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(F) BMP9-induced pSMAD1/5 regulates expression of SMAD target genes including pioneer transcription factors GATA2/3/6 and SOX13/17/18, which

consequently promote chromatin opening. Under Fluid Shear Stress (FSS) application, many target genes including the GATA2/3/6 family become

inaccessible for SMADs, whereas SOX TFs remain BMP9-sensitive. See also Figures S7 and S8.
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transcriptional regulation by SOX (FSS) or SOX and GATA (FSS and BMP9) pioneer TFs. Whether this tran-

scriptional regulation depends on their pioneering function remains to be determined (Figure 4F).

Taken together, we present here the first comprehensive analysis of motifs enriched in genomic regions

regulated by BMP9/FSS and thoroughly analyzed SMAD TF binding in BMP9-sensitive regions. We could

show that ATAC-seq is a powerful and versatile technique suitable to deepen our understanding of BMP-

induced gene regulationmediated by SMAD and non-SMADTFs. Further, combination of BMP-stimulation

with physiological relevant mechano-regimes such as FSS highlights the context dependent regulation of

SMAD signaling by mechano-sensitive pathways.
DISCUSSION

The BMP family of growth factors is comprised of a plethora of members which, upon binding to specific

receptors, induce downstream phosphorylation, i.e., activation, of SMAD1/5 TFs52,53 Still, different BMP

ligands induce distinct sets of target genes, raising the question how this differential transcriptional regu-

lation arises from activation of the same TFs. It has been suggested that these transcriptional outcomes can

be fine-tuned by different affinities of SMAD TFs to target regions16 in addition to induction of non-SMAD

signaling and regulation via co-regulators.53 The MH1 domain of SMADs possess a weak DNA binding af-

finity23 and previous comparative studies showed that these are in a similar nanomolar range for different

SMAD motifs.22 Further it was discussed that a heterotrimeric SMAD complex would gain affinity through

binding to two or three SBEs simultaneously, as suggested for the goosecoid promoter.16,22,54 Analysis of

SMAD1 binding sites via ChIP-seq revealed palindromic GC-SBE motifs in regions that are commonly

bound by SMAD1 in different cell types (e.g., ID1/2/3 loci), and non-palindromic GC-SBE motifs in cell

type specific SMAD1-bound regions.16 We add to these observations that npGC-SBE motifs are particu-

larly associated with BMP9-sensitive active chromatin regions which carry additional pioneer co-TF binding

sites as identified by ATAC-seq. Genes in vicinity to those npGC-SBE+ BSRs were only regulated in the

presence of saturating pSMAD1/5 levels (high-dose), highlighting a mechanism which governs a

pSMAD1/5-dose-dependent target gene regulation. Based on our observations, we envisage a mecha-

nism in which low levels of pSMAD1/5 are capable of binding to pGC-SBE composite motifs in open chro-

matin regions. However, regulating target genes in npGC-SBE+ genomic regions requires the cooperation

of SMAD1/5 and pioneering TF activity, which facilitate the opening of chromatin. Similarly, SMAD2/3-

dependent regulation of mesoderm differentiation genes was associated with SMAD2/3 binding to

pioneer TF FoxH1.34,55

In this study, we further showed that in arterial ECs pioneer TFs GATA2/3 and SOX13/18 are directly regu-

lated by SMAD1/5 on transcript level. This suggests that SMAD1/5 target regulation might occur in two

phases: (1) an immediate response where pSMAD1/5 bind to open chromatin regions with palindromic

GC-SBE composite motifs, including pioneer TFs SOX and GATA and (2) SOX and GATA bind and open

closed chromatin regions and regulate secondary target gene transcription independently or together

with pSMAD1/5 (e.g., UNC5B, SGK1, PRICKLE2).

Analyzing BMP9-induced chromatin accessibility under different physiological or pathological conditions

such as the presence or absence of FSS allows to further identify context dependent co-TFs, which modu-

late BMP-SMAD signaling. ECs are constantly exposed to mechanical forces, including FSS.56 Moreover,

interplay of BMP/TGFb signaling with various mechano-sensitive pathways and direct regulation by me-

chanical forces have been shown.7,57 We therefore analyzed how BMP9 and FSS co-regulate SMAD target

gene regulation on chromatin level. Interestingly, themajority of BMP9-sensitive regions found under static

conditions was lost in the presence of FSS (e.g., NOG locus), whereas other regions remained sensitive to-

ward BMP9 in the presence of FSS (e.g.,UNC5B intron). As FSS reducesGATA2/3 expression, the change in

BSRs from GATA-motif+/SOX-motif+ in static ECs to SOX-motif+ BSRs in FSS-exposed ECs likely coincides

with changes in pioneer TF expression. This is in line with shared regulation of SOX13/17/18 by BMP9 and

FSS. Both GATA and SOX TFs play crucial roles in EC differentiation from embryonic stem cells and main-

tenance of EC specific gene expression, preventing trans-differentiation.58,59 While SOX TFs have been

described to act during differentiation as well as to act vasoprotective in the mature endothelium,

GATA TFs were shown to be upregulated by atheroprone FSS. For instance, Sox18 has been shown to regu-

late EC barrier integrity upon application of FSS in pulmonary arterial ECs,60 FSS-dependent upregulation

of SOX13 was connected to suppression of pro-inflammatory gene expression31 and SOX17 acts as a crit-

ical regulator of vascular homoeostasis, commonly mutated in pulmonary arterial hypertension patients.61
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In contrast, elevated levels of GATA3 were connected to endothelial-mesenchymal transition-mediated

pulmonary arterial hypertension (PAH),62 GATA2 was shown to directly repress atheroprotective TF

KLF2,63 and GATA1/4 expression was elevated by pulsatile oscillatory atheroprone shear stress in

HUVECs.33 In our study, static cultivated ECs resemble more an atheroprone phenotype, highlighting

that previously published static BMP-stimulation EC experiments should be carefully revised when drawing

conclusions about the healthy endothelium. Since SMADs have been shown to interact and be directed to

target sites by SOX andGATA TFs,64,65 in future studies, it will be of interest to focus on how vasoprotective

and atheroprone fluid shear regimes could influence SMAD co-TF association and thereby target gene

regulation.

Besides the differential regulation of SOX and GATA TFs, we observed a shift from ETV/ETS to KLF TFs in

FSS stimulated ECs that was very recently reported to be crucial for FSS driven transcriptomic changes in

human umbilical vein ECs.2 Moreover, we identified a loss of TEADmotif enrichment upon FSS stimulation.

TEAD TFs are binding partners of Yes-associated Protein (YAP) and its paralog, the transcriptional co-acti-

vator with PDZ-binding motif (TAZ).66 YAP/TAZ are well-known for their mechano-responsiveness,67 have

been shown to integrate into BMP/TGFb signaling,7,68,69 and critically regulate angiogenesis and progres-

sion of vascular diseases like pulmonary hypertension or atherosclerosis.70

One limitation in the analysis of SMAD composite motifs is the prediction of which SMAD binding motifs

might contribute to binding of an SMAD trimer. While earlier studies suggest that an SMAD trimer could

efficiently bind to a hetero-composite motif (GC-SBE and SBE) with a 5 bp spacer,16,71 a recent structural

analysis of the BMP R-SMADs highlighted dimerization of SMAD1/5/8 via their MH1 domains, which ren-

ders them incapable of binding the same SBE or in proximity to each other.28 In consequence, two MH1

domains of a SMAD1/5/8-SMAD4 hetero-trimer can occupy a hetero composite motif, whereas the contri-

bution of a third SMAD binding motif to SMAD binding remains to be shown by future studies. Equally, (1)

the limitations of SMAD complex binding toward composite motifs containing different types of GC-SBEs,

and (2) the contribution of co-transcription factors or pioneer TFs in facilitating binding to favorable or less

favorable SMAD1/5 target sites is still unknown.

In conclusion, we provided major insights to the understanding of BMP9-sensitive target region regulation

on chromatin level. In summary, this mechanism involves different requirements for regulating gene

expression in open versus closed chromatin regions carrying distinct GC-SBE motifs. We suggest that

BMP9 induces chromatin opening mediated by GATA and SOX TFs downstream of SMADs. Moreover,

we provided insights in FSS and BMP9 co-regulation of target gene accessibility which may serve as a sub-

stantial base for further studies on angiogenesis or vascular disease.
Limitations of the study

Future studies should place a greater emphasis on different aspects of mechano-sensitive BMP-target

gene regulation. In this study we limited our analysis to human umbilical arterial ECs. Different vascular

beds, such as venous, arterial, microvascular, and macrovascular ECs, may exhibit distinct responses to

BMP signaling due to their specific physiological and functional characteristics. Therefore, future investiga-

tions should consider these differences and compare vascular bed-specific BMP-dependent chromatin

accessibility modulation. Furthermore, there is a need for comprehensive exploration of various BMP

ligands and their effects on chromatin accessibility and gene transcription. To measure direct effects,

we analyzed BMP9-dependent chromatin accessibility changes after 2 h of ligand stimulation. Time-

resolved studies could uncover underlying chromatin remodeling events of differentiation or trans-differ-

entiation processes downstream of BMP. Along that line, it would be of great benefit to integrate chro-

matin accessibility data with RNA expression data to decipher the order of events and correlate chromatin

accessibility changes with changes in gene expression. Finally, the role of SOX and GATA TFs as potential

pioneering factors downstream of BMP9 needs to be studied in more detail.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-SMAD1 Cell Signaling Technology Cat#6944; (D59D7); RRID: AB_10858882

Rabbit monoclonal anti-pSMAD1/5 (Ser463/

465)

Cell Signaling Technology Cat#9516; (41D10); RRID: AB_491015

Rabbit monoclonal anti-UNC5B Cell Signaling Technology Cat#13851; (D9M7Z)

Rabbit monoclonal anti-GAPDH Cell Signaling Technology Cat#2118; (14C10); RRID: AB_561053

Rabbit polyclonal anti-ID1 Santa Cruz Cat#sc-488; (C-20); RRID: AB_631701

Goat IgG anti-rabbit IgG (H + L)-HRPO Dianova Cat#111-035-144; RRID: AB_2307391

Goat IgG anti-mouse IgG + IgM (H + L)-HRPO Dianova Cat#115-035-068; RRID: AB_2338505

Bacterial and virus strains

DH5a Chemically Competent E. coli Our lab N/A

Chemicals, peptides, and recombinant proteins

AMPure XP Beads Beckmann Coulter Cat#A63881

Lipofectamine2000 ThermoFisher Scientific Cat#11668019

NEBNext�High-Fidelity 2X PCR Master Mix New England BioLabs Cat#M0541L

SYBR Green I ThermoFisher Scientific Cat#7563

Luna� Universal qPCR Master Mix New England BioLabs Cat#M3003L

M-MuLV reverse transcriptase enzyme New England BioLabs Cat#M0253S

rhBMP6 S. Vukicevic, Univ. of Zagreb, Croatia N/A

rhBMP9/GDF2 PeproTech Cat#120-07

Critical commercial assays

QuickExtract� DNA Extraction Solution Lucigen Cat#QE09050

WesternBright Quantum kit Advansta Cat#K-12042-D10

NucleoSpin RNA XS isolation kit Macherey-Nagel Cat#740902.50

MinElute Reaction Cleanup Kit Qiagen Cat#28206

Tagment DNA Enzyme and Buffer Large Kit Illumina Cat#20034198

Deposited data

Human Genome Annotation GENCODE

(v29 GRCh38.p12)

Frankish et al.72 https://www.gencodegenes.org/human/

release_29.html

ATAC-seq data of BMP9, FSS and BMP9/FSS

stimulated human Umbilical Artery Endothelial

Cells (HUAECs)

This paper https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE227588

SMAD1/5 ChIP-seq in BMP-9 treated HUVECs Morikawa et al.16 https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE27661

SMAD1/5 ChIP-seq in BMP-9 treated HPAEC Morikawa et al.44 https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE104682

Experimental models: Cell lines

HEK293T cells German Collection of Microorganisms and Cell

Cultures (DSMZ)

Cat#ACC 635

Human Umbilical Artery Endothelial Cells

(HUAECs), single donor, female

PromoCell Cat#C-12200

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Accell human SMAD1 SMARTpool siRNA;

Table S1

Dharmacon Cat#E�012723-00-0005

Accell human SMAD5 SMARTpool siRNA;

Table S1

Dharmacon Cat#E�015791-00-0005

Accell Non-targeting Control siRNA #1;

Table S1

Dharmacon Cat#D-001910-01-05

ATAC-seq barcode adapters, Table S2 Buenrostro et al.73 ordered at idtdna.com N/A

Primers for cloning & Real-time PCR, Table S3 This paper, ordered at Thermo Fisher Scientific N/A

Recombinant DNA

pGL4.17[luc2/Neo] Promega Cat#E6721, DQ188837

pGL4.74[hRluc/TK] Promega Cat#E6921, AY738230

pGL4.17[luc2/Neo] containing SMAD1-bound

regulatory regions 17,22,32 or 60k of human

UNC5B

This paper N/A

Software and algorithms

Prism (v9.3) GraphPad Software https://www.graphpad.com/scientific-

software/prism/

ENCODE ATAC-seq pipeline (v1.10.0) Lee et al.74 https://github.com/ENCODE-DCC/atac-seq-

pipeline#encode-atac-seq-pipeline

Bowtie2 (v2.3.4.3) Langmead et al.75 https://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 (v2.2.4) Zhang et al.76 https://github.com/macs3-project/MACS/

releases/tag/v2.2.4

deepTools (v3.5.1) Ramı́rez et al.77 https://deeptools.readthedocs.io/en/

develop/index.html

R (v4.0.5) R Core Team https://www.r-project.org/

R package DiffBind (v3.0) Ross-Innes et al., Stark78,79 https://bioconductor.org/packages/release/

bioc/html/DiffBind.html

R package GenomicRanges (v1.48.0) Lawrence et al.80 https://bioconductor.org/packages/release/

bioc/html/GenomicRanges.html

GREAT (v4.0.4) McLean et al., Tanigawa45,81 http://great.stanford.edu/public/html/

HOMER (v4.11.1) Heinz et al.46 http://homer.ucsd.edu/homer/

Bedtools (v2.29.2) Quinlan and Hall82 https://bedtools.readthedocs.io/en/latest/

TOBIAS (v0.12.11) Bentsen et al.48 https://github.com/loosolab/TOBIAS

Other

m-Slide I Luer 0.4 mm ibidi Cat#80176

ibidi Pump System Ibidi Cat#10902

HS DNA Bioanalyzer chip Agilent Cat#5067-4626

Perfusion Set YELLOW and GREEN ibidi 10964

Gelatin from porcine skin, Type A Sigma Aldrich G2500
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Petra Knaus (petra.knaus@fu-berlin.de).
iScience 26, 107405, September 15, 2023 17

mailto:petra.knaus@fu-berlin.de
http://idtdna.com
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://github.com/ENCODE-DCC/atac-seq-pipeline#encode-atac-seq-pipeline
https://github.com/ENCODE-DCC/atac-seq-pipeline#encode-atac-seq-pipeline
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/macs3-project/MACS/releases/tag/v2.2.4
https://github.com/macs3-project/MACS/releases/tag/v2.2.4
https://deeptools.readthedocs.io/en/develop/index.html
https://deeptools.readthedocs.io/en/develop/index.html
https://www.r-project.org/
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://great.stanford.edu/public/html/
http://homer.ucsd.edu/homer/
https://bedtools.readthedocs.io/en/latest/
https://github.com/loosolab/TOBIAS


ll
OPEN ACCESS

iScience
Article
Materials availability

Luciferase-Reporter constructs are available upon reasonable request.

Data and code availability

d ATAC-seq data have been deposited at GEO and are publicly available. This paper also analyzes exist-

ing, publicly available data. All accession numbers are listed in the key resources table.

d Original codes and scripts used for the analyses are publicly available as of the date of publication at Gi-

tHub: https://github.com/aybugealtay/BMP9_FSS_ATAC_analysis

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

For expansion female Human Umbilical Artery Endothelial Cells (HUAECs; PromoCell GmbH, Germany)

were cultured in Endothelial Cell Growth Medium 2 (EGM2, C-22111, PromoCell GmbH, Germany) supple-

mented with 10% FCS, and penicillin (100 units/mL)/streptomycin (100 mg/mL) and analyzed between pas-

sages three and five. HEK293T cells were obtained from the German Collection of Microorganisms and Cell

Cultures (DSMZ) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%

FCS, 2 mM L-glutamine and penicillin (100 units/mL)/streptomycin (100 mg/mL) (DMEM full medium) in a

humidified atmosphere at 37�C and 5% CO2 (v/v).
METHOD DETAILS

Transient transfection with expression plasmids and siRNA

All siRNAs were purchased from Dharmacon. For knockdown HUAECs were transfected with 40 nM Accell

human SMAD1 SMARTpool, Accell human SMAD5 SMARTpool, or scrambled (Acell Non-targeting #1)

siRNA with Lipofectamine2000 (ThermoFisher Scientific) according to manufacturer’s instructions. In brief,

300.000 cells/6-well were seeded in 1 mL EGM2 full medium. On the following day, siRNA - Lipofact-

amine2000 mix was prepared in Opti-MEM - Reduced Serum Medium (ThermoFisher Scientific) and incu-

bated for 20 min. Cells were washed with PBS once and 1 mL Opti-MEM was added. Next transfection mix

was added to the cells. Subsequently, after 4 h 1 mL EGM2 medium was added, and 24 h later the medium

replaced with fresh EGM2. All experiments were performed 48 h after siRNA transfection. For luciferase

assays 50.000 HEK293T cells were seeded per 96-well and transfected with 50 ng firefly luciferase reporter

construct and 30 ng RL-TK (Promega) using 0.8 mL Polyethylenimine (PEI, 2 mg/mL).
Cell stimulation with growth factors and SMI treatment

rhBMP6 (gift from S. Vukicevic, Univ. of Zagreb, Croatia) was reconstituted in MilliQ-H20 and rhBMP9/GDF2

(PeproTech) was reconstituted in MilliQ-H20 0.1% BSA. Both were stored at �80�C and added to the cells

with the indicated concentrations in PBS after 3 h of starvation for cell stimulation, if not indicated

otherwise.
SDS-PAGE & Western-blotting

For sodium dodecyl sulfate polyacrylamide gel-electrophoresis (SDS-PAGE), treated cells were lysed in

150 mL Laemmli buffer and frozen at �20�C. The lysate was pulled through an 18-gauge syringe and boiled

for 10 min at 95�C. 10% polyacrylamide gels were cast in advance and stored at 4�C until usage. Separated

by their molecular weight, proteins were transferred onto methanol-activated PVDF membranes by West-

ern-blot. Membranes were blocked for 1 h in 0.1% TBS-T containing 3% w/v BSA, washed three times in

0.1% TBS-T and incubated with indicated primary antibodies overnight at 4�C. Primary antibodies were

applied at a 1:1000 dilution in 3% w/v bovine serum albumin (BSA)/fraction V in TBST. For HRP-based

detection, goat-a-mouse or goat-a-rabbit IgG HRP conjugates (G0.8 mg/mL, Dianova) were used at a dilu-

tion of 1:10,000. Chemiluminescent reactions were processed using WesternBright Quantum HRP sub-

strate (advansta) and documented on a FUSION FX7 digital imaging system.
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Quantitative real-time PCR

Cellular RNA was isolated using the NucleoSpin RNA XS isolation kit (Macherey-Nagel) according to the

manufacturer’s instructions. 0.5 to 1 mg total RNA was reversely transcribed by incubating it with random

primers (100 pmol mL�1, Invitrogen) and M-MuLV reverse transcriptase enzyme (200,000 U mL�1, New En-

gland Biolabs) was added per sample. RT-PCR was performed using a StepOnePlus Real-Time PCR System

(Thermo Fisher Scientific) with specific primers for the genes listed in Table S3. Reactions were performed in

triplicates in MicroAmp Optical 96-well reaction plates (Thermo Fisher Scientific) using Luna PCR Master

Mix (New England Biolabs). Fold induction was calculated by comparing relative gene expression to the

housekeeping gene RSP9 using the DDCT method.

Cloning of luciferase reporter constructs

To generate Firefly Luciferase reporter constructs carrying SMAD1-bound regulatory regions, human

gDNA of HUAECs was isolated using QuickExtract DNA Extraction Solution (Lucigen) and the intronic reg-

ulatory regions (17, 22, 32 and 60) of UNC5Bwere PCR amplified using Phusion High-Fidelity DNA Polymer-

ase (New England Biolabs) and subsequently purified, restriction digested and cloned into pGL4.17[luc2/

Neo] (Promega).

Dual luciferase Reportergene assay

HEK293T cells were transfected with a luciferase reporter construct pGL4.17[luc2/Neo] (Promega, Ger-

many) containing SMAD1-bound regulatory regions 17,22,32 or 60k of human UNC5B or BRE2-luc. A consti-

tutively expressing construct encoding renilla luciferase (RL-TK; Promega) was co-transfected as internal

control. The next day, cells were starved in serum-freemedium for 3 h and stimulated with 5 nM BMP6 over-

night. Cell lysis was performed using passive lysis buffer (Promega) and measurement of luciferase activity

was carried out according to manufacturer’s instructions using a using a TECAN initiate f200 Luminometer

(TECAN).

Application of fluid shear stress

3*105 cells were seeded in EBM-2 full medium (Basal Medium 2 and Supplement Pack (PromoCell, no.

C-22111) supplemented with 1% P/S) to ibidi m-Slide I Luer 0.4 mm (ibidi, no. 80176) pre-coated with

0.1% pork skin gelatin (Sigma-Aldrich). For static conditions, cells were seeded to an equal area in a

10 cm dish, restricted by a silicone barrier during gelatin coating and cell seeding. Cells were kept under

culture conditions (37�C, 5%CO2, 95% RH) for 48 h with daily medium exchanges. On the day of stimulation,

medium was exchanged by pre-warmed EBM-2 starvation medium (Basal Medium 2 and Supplement Pack

(PromoCell, no. C-22211) supplemented with 1% P/S and 2% FCS) and unidirectional laminar flow of 30 dyn/

cm2 was applied for 2 h or 6 h (subsequent to a 5 h ramp phase to allow call adaption to increasing shear

stress). Shear stress was applied using the ibidi pump system (ibidi GmbH) with the associated software

(v 1.4.2).

For co-stimulation experiments, BMP9 in PBS was added to pump reservoirs and static controls dishes at a

final concentration of 0.3 nM. Cells were then harvested for RNA and ATAC-seq (2 h) or protein analysis

(6 h).

ATAC-seq

For ATAC-seq, cells were cultured and exposed to stimulation conditions as described above. For

maximum cell yield ibidi m-slides channels were cut open with a scalpel. The resulting cut-out with the cells

attached was transferred to a 10 cm culture dish. 200 mL pre-warmed trypsin was added and cells were incu-

bated at 37�C. Cleavage reaction was stopped after 5 min with 800 mL of 10% FCS in PBS (4�C) and cell so-

lution was collected.

For each sample 50.000 cells were transferred to a reaction tube and spun down (5003g, 4�C, 5 min). Sam-

ples were kept on ice from now on. ATAC-seq35,83 was performed as described in the section transposition

reaction and buffers from Omni ATAC protocol84 (see table. In brief, isolated cells were lysed in 50 mL lysis

buffer for 3 min, 50 mL wash buffer added, spun down (5003g, 4�C, 5 min), resuspended in 50 mL tagmen-

tation buffer and incubated (37�C, shaking @ 800 rpm, 30 min). This was followed by DNA purification with

the MinElute Reaction Cleanup Kit (Qiagen, no. 28206). For clean-up, the manufacturers protocol was fol-

lowed with two exceptions: Elution was done in 11 mL to get full 10 mL residual volume. Also, longer elution
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time (3–5 min) was used for higher yield of DNA fragments. DNA concentration was measured with a Qubit

fluorometer. DNA fragments were stored at �20�C until further processing.

ATAC-seq library preparation

Library generation, amplification and purification was conducted as in Buenrostro 2015,78,79 including the

qPCR step to estimate the appropriate number of additional PCR cycles. In brief, indexing primers

v2_Ad1.2/3 and v2_Ad2.3/4/5/6 (2.5 mL each) from Buenrostro 2015a73 were ligated to the DNA fragments

(10mL + 10 mL H2O) using PCRMasterMix (NEB,M0541L) (25 mL) in a thermocycler (72�C, 5min; 98�C, 30 s; 5x
(98�C, 10s; 63�C, 30 s; 72�C 1 min)). qPCR was conducted to determine final no. of PCR cycles with 5 mL Li-

brary, 2.5 mL H2O, 0.5 mL Ad1.x, 0.5 mL Ad2.x, 1.5 mL 10x SYBR Green I (ThermoFisher Scientific, S7563), 5 mL

PCR Master Mix with above settings for 20 cycles, skipping the initial 72�C, 5 min. The partially amplified

libraries were then further cycled with above settings, according to the CT values from the qPCR. After

that, two-sided size selection with magnetic AMPure XP Beads (Beckmann Coulter, no. A63881; 0.553

and 0.93 sample volume of bead solution added) was used to remove primer-dimers and large DNA

fragments > 1kb. Library quality was assessed with an HS DNA Bioanalyzer chip (Agilent, no. 5067-4626)

before 2 3 100 paired end Illumina high output sequencing (Max Planck Sequencing Core Facility at

MPIMG).

ATAC-seq data preprocessing

ATAC-seq data were processedvia the standard ENCODE85 ATAC-seq pipeline, using Caper with Conda

(v1.10.0, https://github.com/ENCODE-DCC/atac-seq-pipeline/releases/tag/v1.10.0). Briefly, reads were

aligned with Bowtie2 (v2.3.4.3)75 to hg38 reference genome and filtered for unmapped, duplicates and

mitochondrial reads. Peaks calling was performed using MACS2 (v2.2.4)76 for each individual replicate.

We generated bigWig files for visualization purposes using bamCoverage (v3.5.1) module from deep-

Tools77 with parameters –normalizeUsing RPGC –effectiveGenomeSize 2913022398. We further used

deepTools computeMatrix (v3.5.1) module with parameters –referencePoint center -a 1500 -b 1500 and

plotHeatmap (v3.5.1) module with default parameters to generate heatmaps.

Differential accessibility analysis

We performed differential accessibility analysis for each condition using DiffBind R package (v3.0)86,87 after

sequencing depth normalization and by using DESeq2 as the underlying method. We identified signifi-

cantly differential accessible regions by filtering for FDR% 0.05 and fold change >1.5. GeneOntology anal-

ysis of differentially accessible regions was performed with GREAT tool (v4.0.4)45,81 in basal plus extension

mode with default settings.

Transcription factor motif analysis

Motif enrichment analysis was performed using HOMER (v4.11.1)46 with GENCODE v29 (Release

29, GRCh38.p12) genome annotation.72 We used findMotifsGenome module with the parameters -size

200 -len 8 both for motif enrichment analysis and de novo motif discovery.

In order to count motif occurrences and check whether they form clusters, we used annotatePeaksmodule

from HOMER46 and obtained peak regions enriched for motif of interests, specifically, BGCSAGAC and

CTGGCGCC (the motif files are included in the supplement). We then extracted the exact sequences of

these peaks using bedtools (v2.29.2)82 getfasta module and counted the occurrences.

Transcription factor footprinting analysis

We employed TOBIAS (v0.12.11)48 framework to conduct the transcription factor (TF) footprinting analysis.

We used the same genome and the motif database (obtained from HOMER) as for the motif enrichment

analysis. To perform TF footprinting, we first corrected the Tn5 bias and normalized ATAC-seq signals us-

ing the ATACorrect tool of TOBIAS. Next, we used ScoreBigwig to scan footprints within the selected/dif-

ferential peak regions (with fold change >1.5) and obtained footprint scores. TOBIAS BINDetect matched

these footprints to the motif database. BINDetect was then used to compare the identified footprints and

capture the differential binding activities across experimental conditions such as BMP9-knockout and the

control sample in our project. Lastly, among all the TOBIAS-predicted differential TFs, we selected the

most significantly differentially-binding 50 TFs with p values <0.01.
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Figures

Schemes were created with BioRender.com and figures were assembled using Adobe Photoshop 2020.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using GraphPad Prism (v9.3) software. All statistical tests are listed in the

figure legends. Normal distributions of datasets were tested with the Shapiro-Wilk normality test. In cases

of failure to reject the null hypothesis, the ANOVA and Tukey’s, Dunnett’s or �Sı́dák’s post-hoc test were

used to check for statistical significance under the normality assumption. For all experiments statistical sig-

nificance was assigned, with an alpha-level of p < 0.05.
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